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● Linear Regression
● Matplotlib Pyplot
● Cost/Error Functions
● Basic Model Fitting

○ Brute-Force/Naive
○ Gradient Descent
○ Analytical Solution
○ Matrix Formulation

● Regression Variants
○ Multiple regression
○ Polynomial regression
○ Regularisation

● Limitations of Linear Regression

Overview



Regression

Technique used for the modeling and analysis of numerical data

• Exploits the relationship between two or more variables so that we can gain 
information about one of them through knowing values of the other

• Regression can be used for prediction, estimation, hypothesis testing, and 
modeling causal relationships



Advertising Data Set

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2023). An introduction to statistical learning Python 2nd Edition



Advertising Research Questions

● Is there a relationship between advertising budget and sales? 
● How strong is the relationship between advertising budget and sales?
● Which media are associated with sales?
● How large is the association between each medium and sales? 
● How accurately can we predict future sales? 
● Is the relationship linear?
● Is there synergy among the advertising media?

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2023). An introduction to statistical learning Python 2nd Edition



Simple Linear Regression

Predict a quantitative response Y on the basis of a single predictor variable X i.e., 
regressing Y on/onto X

Y ~ 𝛽0  +  𝛽1 X

X names:
Independent Variable
Predictor Variable
Explanatory Variable
Regression
Feature

𝛽 names:
Intercept / Slope
Coefficients
Weights

Y names:
Dependent Variable
Outcome Variable
Response Variable
Label
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Simple Linear Regression

Predict a quantitative response Y on the basis of a single predictor variable X i.e., 
regressing Y on/onto X

Y ~ 𝛽0  +  𝛽1 X

sales ~ 𝛽0  +  𝛽1 * TV

                                      

Once we estimate 𝛽0  +  𝛽1 we can predict future sales on the basis of a particular value 
of TV advertising by computing:

y = 𝛽0 +  𝛽1 x

hat symbol, ˆ , denotes the estimated value for an unknown value

^ ^

^ ^^



Estimating Coefficients

In practice 𝛽0 +  𝛽1 are unknown so we have to try and find the values that best “fit”  
our data:

(x1, y1), (x2, y2),  . . . , (xn, yn)

Where n is 200 and each x is a TV advertising budget in a specific market and 
each y is the sales in that market.

Specifically, which coefficients draw a line that is as close as possible to as many 
of the points as possible.



Aside: common statistical tests are just linear models

- y independent of x = one number (intercept i.e., mean) predicts y
- t-test
- wilcoxon signed-rank (non-parametric - predicts RANK instead of number)

- y has linear relationship with x = intercept + x * slope predicts y
- Pearson correlation
- Spearman correlation (non-parametric - rank)

- y of groups of x are different: intercept for group 1’s x predicts y
- ANOVA
- Kruskal-Wallis (non-parametric - rank)

https://lindeloev.github.io/tests-as-linear/



Plotting your data is vital to regression!



Matplotlib pyplot

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf



Pyplot offer lots of control of your figure appearances

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf



Linear regression needs more than lines: scatter plots

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf



Saving your figures in pyplot

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf



So, how do we fit linear models?



Measuring “Closeness” using least squares

We can measure closeness between a line and points several ways but most 
common/simplest: least squares

Let yi = 𝛽0 +  𝛽1 xi then ei = yi - yi  (or the difference/residual between the ith 
observed response value and the ith predicted response value) then we can 
calculate closeness: 

Residual sum of squares (RSS) = e1
2 + e2

2  + … + en
2 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2023). An introduction to statistical learning Python 2nd Edition



RSS as a cost/loss/fit function

Residual sum of squares (RSS) = e1
2 + e2

2  + … + en
2 

def calculate_rss(beta0, beta1, x, y):

‘‘‘beta0 and beta1 - floats

x, y - np.arrays

returns float’’’

     y_pred = beta0 + beta1 * x

     residuals = y - y_pred

     return np.sum(residuals**2)

Assume we have done import numpy as np
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2023). An introduction to statistical learning Python 2nd Edition



Let’s simulate a simple dataset and start 
using this calculate_rss function to fit 

linear models



There are several approaches we can take to finding 
the optimal parameters values for a model.

Finding linear parameters (slope + intercept) in python

rng = np.random.default_rng(42)

x = np.linspace(0, 10, 100)

y_true = 3 + 2 * x  

# True relationship: y = 3 + 2x

y = y_true + rng.normal(0, 2, size=len(x))  

# Add some noise



There are several approaches we can take to finding 
the optimal parameters values for a model.

● Naive grid (or random) search
○ Try a bunch of values and pick the best
○ Pros: always works eventually
○ Cons: eventually can be infinite

Brute-force naive approach
beta_0_values = np.linspace(-10, 10, 100)
beta_1_values =  np.linspace(-10, 10, 100)

min_rss = float('inf')
best_beta_0 = None
best_beta_1 = None
    
# Nested loop to try all combinations
for beta_0 in beta_0_values:
    for beta_1 in beta_1_values:
        current_rss = calculate_rss(beta_0, 

  beta_1, 
  x, y)

        if current_rss < min_rss:
            min_rss = current_rss
            best_beta_0 = beta_0
            best_beta_1 = beta_1



Relationship between RSS and parameter values

Find lowest RSS: go down this surface until we get to the bottom.

But how to calculate slope without calculating every possible value?



Gradient descent using partial derivatives of RSS

RSS = Σ(yᵢ - (β₀ + β₁xᵢ))² = Σ(yᵢ - β₀ - β₁xᵢ)²

2 parameters so need to calculate derivative with 
respect to β₀ and β₁ i.e., partial derivatives using 
chain rule.

Chain rule: (f(g(x)))' = f'(g(x)) × g'(x)

∂RSS/∂β₀ = Σ 2(yᵢ - β₀ - β₁xᵢ) × (-1)  

       = -2Σ(yᵢ - (β₀ + β₁xᵢ)) 

∂RSS/∂β₁ = Σ 2(yᵢ - β₀ - β₁xᵢ) × (-xᵢ)

                = -2Σ(yᵢ - β₀ - β₁xᵢ)xᵢ

beta_0, beta_1 = 0, 0

learning_rate = 0.0001

prev_rss = calculate_rss(beta_0, beta_1, x, y)

for i in range(10000):

y_pred = beta_0 + beta_1 * x

grad_beta_0 = -2 * np.sum(y - y_pred)

grad_beta_1 = -2 * np.sum((y - y_pred) * x)

beta_0 = beta_0 - learning_rate * grad_beta_0

beta_1 = beta_1 - learning_rate * grad_beta_1

current_rss = calculate_rss(beta_0, beta_1, x, y)

if abs(prev_rss - current_rss) < 1e-8:

            break

prev_rss = current_rss



Learning rate is essentially relative “step” 
size when sliding down the gradient.

Learning rate too small:

● Convergence becomes extremely 
slow

● Stuck in local minima
● Can run out of iterations!

Learning rate too large:

● Overshoot optimal value and 
oscillate

● Failure to converge
● Float overflows

Learning Rate is an important parameter



Analytical approach: finding an exact closed-form solution

∂RSS/∂β₁ = -2Σ(yᵢ - β₀ - β₁xᵢ)xᵢ

             0 = Σxᵢyᵢ - β₀Σxᵢ - β₁Σxᵢ²   : expand

             Σxᵢyᵢ - (ȳ - β₁x̄)Σxᵢ - β₁Σxᵢ² = 0   : substitute β0 = ȳ - β₁x̄

             Σxᵢyᵢ - ȳΣxᵢ + β₁x̄Σxᵢ - β₁Σxᵢ² = 0  : simplify

             Σxᵢyᵢ - nȳx̄ + β₁nx̄² - β₁Σxᵢ² = 0   :  Σxᵢ = nx̄  

             β₁(Σxᵢ² - nx̄²) = Σxᵢyᵢ - nȳx̄    : rearrange to isolate β₁ 

             β₁ = (Σxᵢyᵢ - nȳx̄)/(Σxᵢ² - nx̄²)

             β₁ = Σ(xᵢ - x̄)(yᵢ - ȳ)/Σ(xᵢ - x̄)²

Can directly calculate solution by solving for 
∂RSS/∂β0 = 0 and ∂RSS/∂β1 = 0

∂RSS/∂β₀ = -2Σ(yᵢ - β₀ - β₁xᵢ) = 0

    0  = -2[Σyᵢ - nβ₀ - β₁Σxᵢ]  : expand

  nβ₀ = Σyᵢ - β₁Σxᵢ      : rearrange 

  β₀ = (Σyᵢ - β₁Σxᵢ)/n   : divide by n

  β₀ = ȳ - β₁x̄ :  sub Σyᵢ/n = ȳ and Σxᵢ/n = x̄ 

  

Special case for OLS - not possible for all models 



x_mean = np.mean(x)

y_mean = np.mean(y)

    

numerator = np.sum((x - x_mean) * (y - y_mean))

denominator = np.sum((x - x_mean)**2)    

beta_1 = numerator / denominator

beta_0 = y_mean - beta_1 * x_mean

rss = calculate_rss(beta_0, beta_1, x, y)

Analytical approach: finding an exact closed-form solution

Can directly calculate solution by solving for 
∂RSS/∂β0 = 0 and ∂RSS/∂β1 = 0

β₀ = ȳ - β₁x̄

β₁ = Σ((x - x̄)(y - ȳ)) / Σ((x - x̄)²)



Matrix formulation of analytical solution

Simplify y = β₀ + β₁x + ε to y = Xβ + ε by adding 
column of 1s to x.

RSS(β) = (y - Xβ)ᵀ(y - Xβ)

Repeating the partial derivative solution in matrix 
form:

β = (XᵀX)⁻¹Xᵀy 

X = np.column_stack((np.ones(n), x)) # add ones 

beta = np.linalg.inv(X.T @ X) @ X.T @ y

beta0, beta1 = beta



beta0, beta1 = np.polyfit(x, y, 1)

from scipy import stats

result = stats.linregress(x, y)

beta_0 = result.intercept

beta_1 = result.slope

import statsmodels.api as sm

X = sm.add_constant(x)  # add column of 1s for intercept to simplify

model = sm.OLS(y, X)

results = model.fit()

beta_0 = results.params[0]  

beta_1 = results.params[1]  

Not doing everything by hand!
● Several libraries in python that can fit 

simple linear models

● numpy most basic and all interpretation 
(e.g., calculating RSS, applying values, 
calculating p-values etc is manual)

● scipy provides a more intuitive interface 
but still relatively simple

● statsmodels - python’s main statistical 
modelling library that does regression in a 
more traditional “statistical” manner (e.g., 
regression table etc). 

● scikit-learn - more on that next week!



Summary of ways to fit linear models

● Grid Search: great if you’ve got nothing better!
a. Pros: simple, easily implemented, works when 

there is no gradient, often works eventually
b. Cons: slow, expensive, can miss optimal 

values
● Gradient Descent: workhorse

a. Pros: highly flexible, works well
b. Cons: hyperparameters, issues with 

convergence/getting stuck, no guarantee of 
optimal value

● Analytical Solutions: usually best if it exists!
a. Pros: exact solution in one step with no 

hyperparameters
b. Cons: often doesn’t exist and can struggle 

with large datasets due to matrix inversion and 
multicollinearity

● Too little data, biases in data, very big or small values 
- never find exact true parameter values with any 
method



Regression is multiple courses!



Many variations on simple linear regression

What if we have more than 1 column of data in x? 

Generalise to multiple linear regression:

y = β0  * x0 + β1 *x1  + β2 *x2  +...+ βp *  xp  + ϵ

What if the relationship is not a straight line?

y = β0  + β1 * x + β2 * x
2 +... + βn*x

n + ϵ

What if I want to find the SIMPLEST model?

Change cost function to penalise big parameters

L1 Regularisation: LASSO

Breaks analytical solution => gradient descent

# multiple regression

beta = np.linalg.inv(X.T @ X) @ X.T @ y

# add polynomial values to X    

X_poly = np.ones((len(x), 1))    

for d in range(1, degree + 1):

X_poly = np.column_stack((X_poly, x**d))

beta = np.linalg.inv(X_poly.T @ X_poly) @ X_poly.T @ y

# or polyfit

np.polyfit(x, y, degree)



Limitations of linear regression

Linear regression has several limitations:

● Linearity Assumption: Fails with highly nonlinear relationships, even with polynomial features.
○ Tree-based methods or neural networks.

● Outlier Sensitivity: Coefficients highly influenced by outliers.
○ Robust regression methods like Huber regression.

● Multicollinearity: Unstable when predictors are highly correlated.
○ Use regularization or principal component regression.

● Heteroscedasticity: When error variance isn't constant.
○ Weighted least squares or transformations.

● Non-normal Errors: Affects inference validity.
○ Generalized linear models.



● Linear Regression
○ core method for exploring data relationships

● Matplotlib Pyplot
○ basic python plotting functions

● Cost/Error Functions: 
○ Function that measures closeness to known data - form basis of model fitting
○ Residual sum of squares i.e., Ordinary Least Squares common in linear regression

● Basic Model Fitting
○ Brute-Force/Naive: try lots of values and pick the best
○ Gradient Descent: use gradients for direction of parameter updates (needs learning rate)
○ Analytical Solution: can use calculus to directly solve OLS 
○ Matrix Formulation: matrix formulation of analytical solution makes calculation more convenient in numpy

● Regression Variants
○ Multiple regression: fit a separate beta to each column of your data
○ Polynomial regression: use higher-order combinations of your features
○ Regularisation: penalise your cost function based on numbers of parameters

● Challenges of Linear Regression
○ Assumes linearity, minimal outliers, constant normal error variance, independence of  predictors

Summary


