
CSCI2202: Lecture 10
Regression

Finlay Maguire (finlay.maguire@dal.ca)
TA: Ehsan Baratnezhad (ethan.b@dal.ca)

TA: Precious Osadebamwen (precious.osadebamwen@dal.ca)

mailto:finlay.maguire@dal.ca
mailto:ethan.b@dal.ca
mailto:precious.osadebamwen@dal.ca

● Linear Regression
● Matplotlib Pyplot
● Cost/Error Functions
● Basic Model Fitting

○ Brute-Force/Naive
○ Gradient Descent
○ Analytical Solution
○ Matrix Formulation

● Regression Variants
○ Multiple regression
○ Polynomial regression
○ Regularisation

● Limitations of Linear Regression

Overview

Regression

Technique used for the modeling and analysis of numerical data

• Exploits the relationship between two or more variables so that we can gain
information about one of them through knowing values of the other

• Regression can be used for prediction, estimation, hypothesis testing, and
modeling causal relationships

Advertising Data Set

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2023). An introduction to statistical learning Python 2nd Edition

Advertising Research Questions

● Is there a relationship between advertising budget and sales?
● How strong is the relationship between advertising budget and sales?
● Which media are associated with sales?
● How large is the association between each medium and sales?
● How accurately can we predict future sales?
● Is the relationship linear?
● Is there synergy among the advertising media?

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2023). An introduction to statistical learning Python 2nd Edition

Simple Linear Regression

Predict a quantitative response Y on the basis of a single predictor variable X i.e.,
regressing Y on/onto X

Y ~ 𝛽0 + 𝛽1 X

X names:
Independent Variable
Predictor Variable
Explanatory Variable
Regression
Feature

𝛽 names:
Intercept / Slope
Coefficients
Weights

Y names:
Dependent Variable
Outcome Variable
Response Variable
Label

Simple Linear Regression

Predict a quantitative response Y on the basis of a single predictor variable X i.e.,
regressing Y on/onto X

Y ~ 𝛽0 + 𝛽1 X

sales ~ 𝛽0 + 𝛽1 * TV

𝛽 names:
Intercept / Slope
Coefficients
Parameters
Weights

Y names:
Dependent Variable
Outcome Variable
Response Variable
Label

X names:
Independent Variable
Predictor Variable
Explanatory Variable
Regression
Feature

Simple Linear Regression

Predict a quantitative response Y on the basis of a single predictor variable X i.e.,
regressing Y on/onto X

Y ~ 𝛽0 + 𝛽1 X

sales ~ 𝛽0 + 𝛽1 * TV

Once we estimate 𝛽0 + 𝛽1 we can predict future sales on the basis of a particular value
of TV advertising by computing:

y = 𝛽0 + 𝛽1 x

hat symbol, ˆ , denotes the estimated value for an unknown value

^ ^

^ ^^

Estimating Coefficients

In practice 𝛽0 + 𝛽1 are unknown so we have to try and find the values that best “fit”
our data:

(x1, y1), (x2, y2), . . . , (xn, yn)

Where n is 200 and each x is a TV advertising budget in a specific market and
each y is the sales in that market.

Specifically, which coefficients draw a line that is as close as possible to as many
of the points as possible.

Aside: common statistical tests are just linear models

- y independent of x = one number (intercept i.e., mean) predicts y
- t-test
- wilcoxon signed-rank (non-parametric - predicts RANK instead of number)

- y has linear relationship with x = intercept + x * slope predicts y
- Pearson correlation
- Spearman correlation (non-parametric - rank)

- y of groups of x are different: intercept for group 1’s x predicts y
- ANOVA
- Kruskal-Wallis (non-parametric - rank)

https://lindeloev.github.io/tests-as-linear/

Plotting your data is vital to regression!

Matplotlib pyplot

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

Pyplot offer lots of control of your figure appearances

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

Linear regression needs more than lines: scatter plots

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

Saving your figures in pyplot

https://gsbrodal.github.io/ipsa/slides/all-slides.pdf

So, how do we fit linear models?

Measuring “Closeness” using least squares

We can measure closeness between a line and points several ways but most
common/simplest: least squares

Let yi = 𝛽0 + 𝛽1 xi then ei = yi - yi (or the difference/residual between the ith
observed response value and the ith predicted response value) then we can
calculate closeness:

Residual sum of squares (RSS) = e1
2 + e2

2 + … + en
2

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2023). An introduction to statistical learning Python 2nd Edition

RSS as a cost/loss/fit function

Residual sum of squares (RSS) = e1
2 + e2

2 + … + en
2

def calculate_rss(beta0, beta1, x, y):

‘‘‘beta0 and beta1 - floats

x, y - np.arrays

returns float’’’

 y_pred = beta0 + beta1 * x

 residuals = y - y_pred

 return np.sum(residuals**2)

Assume we have done import numpy as np
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2023). An introduction to statistical learning Python 2nd Edition

Let’s simulate a simple dataset and start
using this calculate_rss function to fit

linear models

There are several approaches we can take to finding
the optimal parameters values for a model.

Finding linear parameters (slope + intercept) in python

rng = np.random.default_rng(42)

x = np.linspace(0, 10, 100)

y_true = 3 + 2 * x

True relationship: y = 3 + 2x

y = y_true + rng.normal(0, 2, size=len(x))

Add some noise

There are several approaches we can take to finding
the optimal parameters values for a model.

● Naive grid (or random) search
○ Try a bunch of values and pick the best
○ Pros: always works eventually
○ Cons: eventually can be infinite

Brute-force naive approach
beta_0_values = np.linspace(-10, 10, 100)
beta_1_values = np.linspace(-10, 10, 100)

min_rss = float('inf')
best_beta_0 = None
best_beta_1 = None

Nested loop to try all combinations
for beta_0 in beta_0_values:
 for beta_1 in beta_1_values:
 current_rss = calculate_rss(beta_0,

 beta_1,
 x, y)

 if current_rss < min_rss:
 min_rss = current_rss
 best_beta_0 = beta_0
 best_beta_1 = beta_1

Relationship between RSS and parameter values

Find lowest RSS: go down this surface until we get to the bottom.

But how to calculate slope without calculating every possible value?

Gradient descent using partial derivatives of RSS

RSS = Σ(yᵢ - (β₀ + β₁xᵢ))² = Σ(yᵢ - β₀ - β₁xᵢ)²

2 parameters so need to calculate derivative with
respect to β₀ and β₁ i.e., partial derivatives using
chain rule.

Chain rule: (f(g(x)))' = f'(g(x)) × g'(x)

∂RSS/∂β₀ = Σ 2(yᵢ - β₀ - β₁xᵢ) × (-1)

 = -2Σ(yᵢ - (β₀ + β₁xᵢ))

∂RSS/∂β₁ = Σ 2(yᵢ - β₀ - β₁xᵢ) × (-xᵢ)

 = -2Σ(yᵢ - β₀ - β₁xᵢ)xᵢ

beta_0, beta_1 = 0, 0

learning_rate = 0.0001

prev_rss = calculate_rss(beta_0, beta_1, x, y)

for i in range(10000):

y_pred = beta_0 + beta_1 * x

grad_beta_0 = -2 * np.sum(y - y_pred)

grad_beta_1 = -2 * np.sum((y - y_pred) * x)

beta_0 = beta_0 - learning_rate * grad_beta_0

beta_1 = beta_1 - learning_rate * grad_beta_1

current_rss = calculate_rss(beta_0, beta_1, x, y)

if abs(prev_rss - current_rss) < 1e-8:

 break

prev_rss = current_rss

Learning rate is essentially relative “step”
size when sliding down the gradient.

Learning rate too small:

● Convergence becomes extremely
slow

● Stuck in local minima
● Can run out of iterations!

Learning rate too large:

● Overshoot optimal value and
oscillate

● Failure to converge
● Float overflows

Learning Rate is an important parameter

Analytical approach: finding an exact closed-form solution

∂RSS/∂β₁ = -2Σ(yᵢ - β₀ - β₁xᵢ)xᵢ

 0 = Σxᵢyᵢ - β₀Σxᵢ - β₁Σxᵢ² : expand

 Σxᵢyᵢ - (ȳ - β₁x̄)Σxᵢ - β₁Σxᵢ² = 0 : substitute β0 = ȳ - β₁x̄

 Σxᵢyᵢ - ȳΣxᵢ + β₁x̄Σxᵢ - β₁Σxᵢ² = 0 : simplify

 Σxᵢyᵢ - nȳx̄ + β₁nx̄² - β₁Σxᵢ² = 0 : Σxᵢ = nx̄

 β₁(Σxᵢ² - nx̄²) = Σxᵢyᵢ - nȳx̄ : rearrange to isolate β₁

 β₁ = (Σxᵢyᵢ - nȳx̄)/(Σxᵢ² - nx̄²)

 β₁ = Σ(xᵢ - x̄)(yᵢ - ȳ)/Σ(xᵢ - x̄)²

Can directly calculate solution by solving for
∂RSS/∂β0 = 0 and ∂RSS/∂β1 = 0

∂RSS/∂β₀ = -2Σ(yᵢ - β₀ - β₁xᵢ) = 0

 0 = -2[Σyᵢ - nβ₀ - β₁Σxᵢ] : expand

 nβ₀ = Σyᵢ - β₁Σxᵢ : rearrange

 β₀ = (Σyᵢ - β₁Σxᵢ)/n : divide by n

 β₀ = ȳ - β₁x̄ : sub Σyᵢ/n = ȳ and Σxᵢ/n = x̄

Special case for OLS - not possible for all models

x_mean = np.mean(x)

y_mean = np.mean(y)

numerator = np.sum((x - x_mean) * (y - y_mean))

denominator = np.sum((x - x_mean)**2)

beta_1 = numerator / denominator

beta_0 = y_mean - beta_1 * x_mean

rss = calculate_rss(beta_0, beta_1, x, y)

Analytical approach: finding an exact closed-form solution

Can directly calculate solution by solving for
∂RSS/∂β0 = 0 and ∂RSS/∂β1 = 0

β₀ = ȳ - β₁x̄

β₁ = Σ((x - x̄)(y - ȳ)) / Σ((x - x̄)²)

Matrix formulation of analytical solution

Simplify y = β₀ + β₁x + ε to y = Xβ + ε by adding
column of 1s to x.

RSS(β) = (y - Xβ)ᵀ(y - Xβ)

Repeating the partial derivative solution in matrix
form:

β = (XᵀX)⁻¹Xᵀy

X = np.column_stack((np.ones(n), x)) # add ones

beta = np.linalg.inv(X.T @ X) @ X.T @ y

beta0, beta1 = beta

beta0, beta1 = np.polyfit(x, y, 1)

from scipy import stats

result = stats.linregress(x, y)

beta_0 = result.intercept

beta_1 = result.slope

import statsmodels.api as sm

X = sm.add_constant(x) # add column of 1s for intercept to simplify

model = sm.OLS(y, X)

results = model.fit()

beta_0 = results.params[0]

beta_1 = results.params[1]

Not doing everything by hand!
● Several libraries in python that can fit

simple linear models

● numpy most basic and all interpretation
(e.g., calculating RSS, applying values,
calculating p-values etc is manual)

● scipy provides a more intuitive interface
but still relatively simple

● statsmodels - python’s main statistical
modelling library that does regression in a
more traditional “statistical” manner (e.g.,
regression table etc).

● scikit-learn - more on that next week!

Summary of ways to fit linear models

● Grid Search: great if you’ve got nothing better!
a. Pros: simple, easily implemented, works when

there is no gradient, often works eventually
b. Cons: slow, expensive, can miss optimal

values
● Gradient Descent: workhorse

a. Pros: highly flexible, works well
b. Cons: hyperparameters, issues with

convergence/getting stuck, no guarantee of
optimal value

● Analytical Solutions: usually best if it exists!
a. Pros: exact solution in one step with no

hyperparameters
b. Cons: often doesn’t exist and can struggle

with large datasets due to matrix inversion and
multicollinearity

● Too little data, biases in data, very big or small values
- never find exact true parameter values with any
method

Regression is multiple courses!

Many variations on simple linear regression

What if we have more than 1 column of data in x?

Generalise to multiple linear regression:

y = β0 * x0 + β1 *x1 + β2 *x2 +...+ βp * xp + ϵ

What if the relationship is not a straight line?

y = β0 + β1 * x + β2 * x
2 +... + βn*x

n + ϵ

What if I want to find the SIMPLEST model?

Change cost function to penalise big parameters

L1 Regularisation: LASSO

Breaks analytical solution => gradient descent

multiple regression

beta = np.linalg.inv(X.T @ X) @ X.T @ y

add polynomial values to X

X_poly = np.ones((len(x), 1))

for d in range(1, degree + 1):

X_poly = np.column_stack((X_poly, x**d))

beta = np.linalg.inv(X_poly.T @ X_poly) @ X_poly.T @ y

or polyfit

np.polyfit(x, y, degree)

Limitations of linear regression

Linear regression has several limitations:

● Linearity Assumption: Fails with highly nonlinear relationships, even with polynomial features.
○ Tree-based methods or neural networks.

● Outlier Sensitivity: Coefficients highly influenced by outliers.
○ Robust regression methods like Huber regression.

● Multicollinearity: Unstable when predictors are highly correlated.
○ Use regularization or principal component regression.

● Heteroscedasticity: When error variance isn't constant.
○ Weighted least squares or transformations.

● Non-normal Errors: Affects inference validity.
○ Generalized linear models.

● Linear Regression
○ core method for exploring data relationships

● Matplotlib Pyplot
○ basic python plotting functions

● Cost/Error Functions:
○ Function that measures closeness to known data - form basis of model fitting
○ Residual sum of squares i.e., Ordinary Least Squares common in linear regression

● Basic Model Fitting
○ Brute-Force/Naive: try lots of values and pick the best
○ Gradient Descent: use gradients for direction of parameter updates (needs learning rate)
○ Analytical Solution: can use calculus to directly solve OLS
○ Matrix Formulation: matrix formulation of analytical solution makes calculation more convenient in numpy

● Regression Variants
○ Multiple regression: fit a separate beta to each column of your data
○ Polynomial regression: use higher-order combinations of your features
○ Regularisation: penalise your cost function based on numbers of parameters

● Challenges of Linear Regression
○ Assumes linearity, minimal outliers, constant normal error variance, independence of predictors

Summary

